Legal Framework and Prescribed Standard Methods for Real Time Monitoring

National Policy on Online Monitoring

In "National Environment Policy" it is envisaged that to strengthen the testing infrastructure and network for monitoring ambient environmental quality and progressively ensure real-time, and online availability of the monitoring data

Regulatory Regime

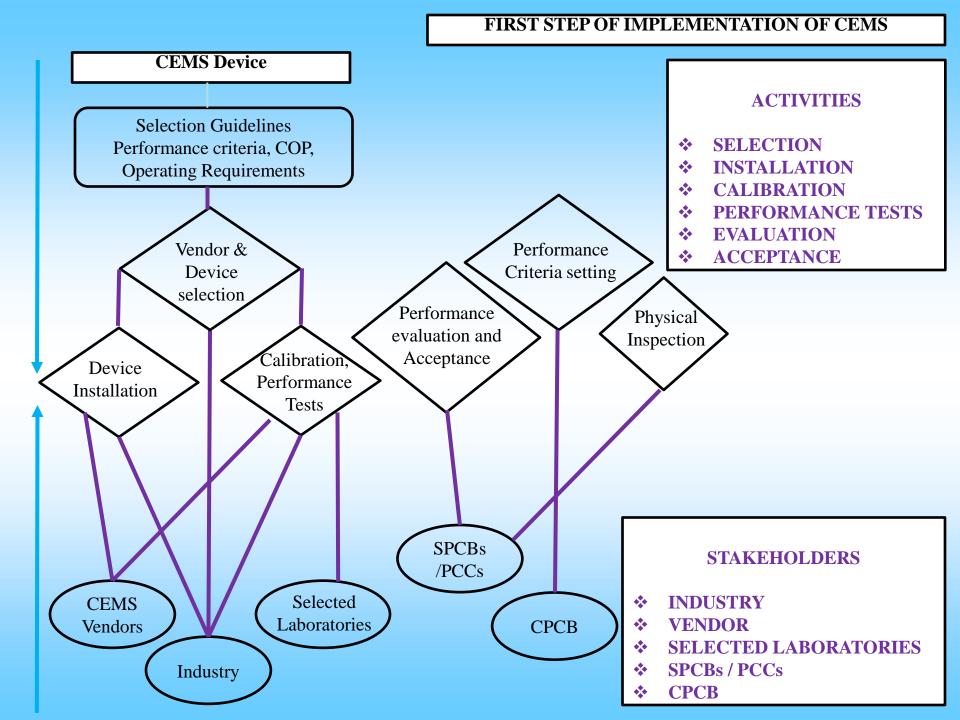
- Consent orders of SPCBs/PCCs specify standards to be complied by industries
- Industries submit analysis reports to SPCBs/PCCs and invariably copies are marked to CPCB
- Reports submitted by industries largely comply with the consent standard limits in contrast to the samples collected by SPCBs/PCCs/CPCB that by and large remains non complying.

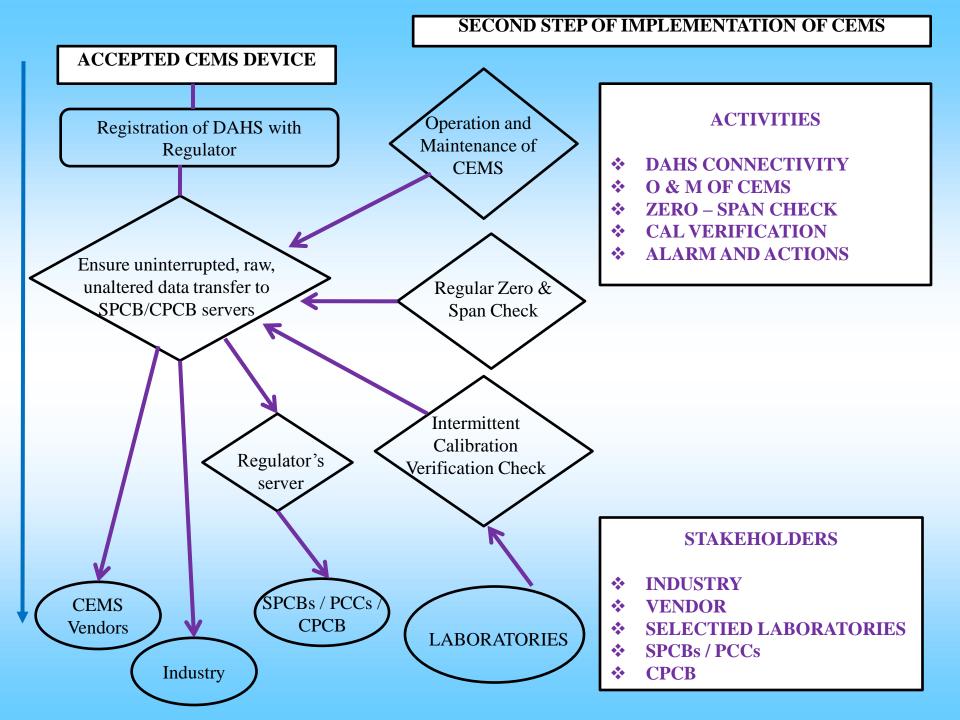
Actions (based on manual monitoring methodology) against industries are not leading to improvement in treatment processes by the units besides the persistent defaulters remains non committal.

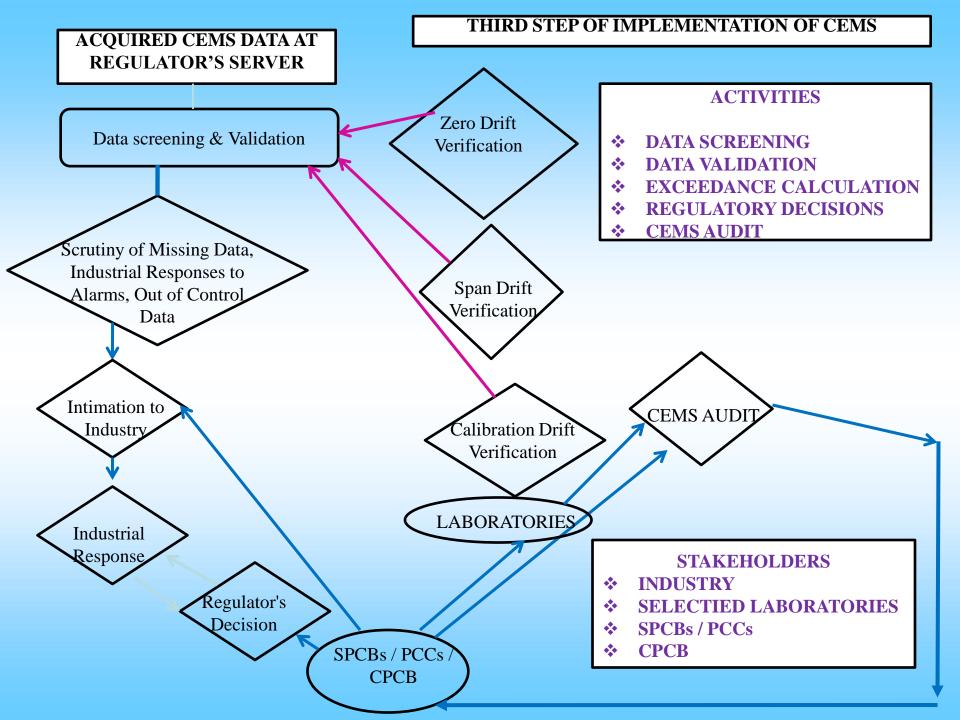
Regulatory Regime (contd.)

Monitoring mechanism is weak due to lack of logistics, manpower and resources among the SPCBs/PCCs/CPCB obviously due to vastness of the jurisdiction area for regional offices and Zonal offices.

Remedy is to put in place alternate monitoring mechanism on self monitoring methodology by industries and provide online data to regulatory regime.


Emission Limits for Selected Industries


S.N	Industries / Facilities	Units of Operation	Parameters prescribed	Notified Standard Emission Limits	Remarks / Possible Types of CEMS
01	Aluminum	Raw Material Handling	PM	150 mg/NM ³	
		Calcinations	PM	250 mg/NM ³	In situ PM CEMS
			со	1% (Max)	NDIR for CO
		Green Anode Shop	PM	150 mg/NM ³	FTIR for CO and F
		Anode Bake Oven	PM	50 mg/NM ³ ,	DOAS for all
			Total	0.3 Kg/MT of Al	
			Fluoride		
		Potroom	PM,	150 mg/NM ³	
			Total	Total F ⁻ 2.8 Kg/MT (Soderberg Tech.)	
			Fluoride	0.8 kg/t (Pre-baked Technology)	
02	Cement	Rotary Kiln	PM	30 / 50 / 100 mg/NM ³	Cross Duct PM CEMS
	without Co-		NO _X	600 / 800 mg/NM ³	UV Photometry and
	processing		SO ₂	100 mg/NM ³	Chemiluminescence for
		Vertical Shaft	PM	50 / 75 / 100 / 150 mg/NM ³	Extractive dilution system
			NO _X	500 mg/NM ³	NDIR for CO
			SO ₂	200 mg/NM ³	IR GFC, FTIR, DOAS for multi-
	Cement Co-	Rotary Kiln	PM	30 mg/NM ³	gas analysis
	processing		NO _X	600 /800 / 1000 mg/NM ³	
			SO ₂	100/700/1000 mg/NM ³	
03	Distillery	Boiler	PM	150 mg/NM ³	In situ / Cross Duct PM CEMS
04	Chlor-Alkali	(Hypo tower)	Cl ₂	15 mg/NM ³	UV Photometry, FTIR, DOAS
		HCI Plant	HCI	HCl vapour and Mists – 35 mg/NM ³	Mist Not Possible
05	Fertilizers	Phosphate	PM,	PM – 150 mg/NM ³	
			Fluoride	Total Fluoride – 25 mg/NM ³	In situ / Cross Duct PM CEMS
		Urea (Old)before	PM	150 mg/NM ³	FTIR / DOAS for F
		01.01.1982	Fluoride	2 Kg/MT of product	
			PM	50 mg/NM ³	
		Urea (New)after 01.01.198	2 Fluoride	0.5 Kg/MT of product	


Industries / **Units of Operation** S.N **Parameters Notified Standard Emission Limits** Remarks **Facilities** prescribed **Coke Oven Plant Cross Duct PM CEMS** 06 Iron & Steel PM **New Batteries** 50 mg/NM3 UV Photometry and SO2 **Rebuild Batteries** 800 mg/NM3 Chemiluminescence for SO2 and **Existing Batteries** NOX 500 mg/NM3 NOX respectively for Extractive PM **Sintering Plant** 150 mg/NM3 dilution system NDIR for CO **Existing Units New Units Blast Furnace** IR, IR GFC, FTIR, DOAS for multi-PM 50 mg/NM3 30 ma/NM3 gas analysis SO2 250 mg/NM3 200 mg/NM3 NOX 150 mg/NM3 150 mg/NM3 CO 1% (Max) 1% (Max) **Oil refinery** Furnace, Boiler and captive After 2008 Cross Duct / Insitu PM CEMS 07 Before 2008 power plant Gas based PM 10 mg/NM3 5 mg/NM3 UV Photometry and SO2 50 mg/NM3 Chemiluminescence for SO2 and 50 mg/NM3 NOX 350 mg/NM3 250 mg/NM3 NOX Extractive dilution system CO 100 mg/NM3 NDIR for CO 150 mg/NM3 Furnace, Boiler and captive Before 2008 After 2008 IR GFC, FTIR, DOAS for multi-gas power plant Liquid Fuel PM 100 mg/NM3 50 mg/NM3 analysis SO2 1700 mg/NM3 850 mg/NM3 based NOX 450 mg/NM3 350 mg/NM3 CO 150 mg/NM3 200 mg/NM3 Sulphur Recovery Unit (SRU) Existing SRU New SRU H₂S 15 mg/NM3 10 mg/NM3 NOX 250 mg/NM3 350 mg/NM3 CO 150 mg/NM3 150 mg/NM3 08 **Petrochemical** Furnace, Boiler Heater **Existing Plant New / Expansion** Cross Duct / In situ PM CEMS Vaporizer PM, 100 mg/NM3 50 mg/NM3 UV Photometry and SO2 **Chemiluminescence for SO2 and** Liquid Fuel based 450 mg/NM3 350 mg/NM3 NOX 1700 mg/NM3 850 mg/NM3 NOX Extractive dilution system CO 200 mg/NM3 150 mg/NM3 NDIR for CO Furnace, Boiler Heater IR GFC, FTIR, DOAS for multi-gas **Existing Plant New / Expansion** Vaporizer PM, 10 mg/NM3 5 mg/NM3 analysis Gas based SO2 50 mg/NM3 50 mg/NM3 NOX 350 mg/NM3 250 mg/NM3 CO 150 mg/NM3 100 mg/NM3

Emission Limits for Selected Industries Contd.

S.N	Industries / Facilities	Units of Operation	Parameters prescribed	Notified Standar	d Emission Limits	Remarks
09	Power Plant	TPP Installed before 31st	prescribed	Less than 500 MW	More than 500 MW	Cross Duct PM CEMS
		December 2003	PM	100 mg/NM3	100 mg/NM3	UV Photometry and
			NOX	600 mg/NM3	600 mg/NM3	Chemiluminescence for SO2 and
			SO2	600 mg/NM3	200 mg/NM3	NOX Extractive dilution system
			Hg	0.03 mg/NM3	0.03 mg/NM3	IR GFC, FTIR, DOAS for multi-gas
		TPP Installed before 1st		Less than 500 MW	More than 500 MW	analysis
		January 2004 upto 31st	PM	50 mg/NM3	100 mg/NM3	For Hg Gold amalgamation or
		December 2016	NOX	300 mg/NM3	600 mg/NM3	Thermal desorption followed by
			SO2	600 mg/NM3	200 mg/NM3	AAS / AFS
			Hg	0.03 mg/NM3	0.03 mg/NM3	
		TPP Installed before 1st	PM	30 mg	g/NM3	
		January 2017 onward	NOX	100 m	g/NM3	
			SO2	100 m	g/NM3	
			Hg	0.03 m	g/NM3	
10	Zinc			Old units	New Units	Cross Duct / Insitu PM CEMS
		Smelter	PM	100 mg/NM3	75 mg/NM3	Cross Duct PM CEMS
		SRU	SO2	1370 (Upto 300 T)	1250 (Upto 300 T)	UV Photometry Extractive dilution
				1250 (above 300 T)	950 (above 300 T)	system ,IR GFC for in situ system
11	Copper			Old units	New Units	
		Smelter	PM	100 mg/NM3	75 mg/NM3	
		SRU	SO2	1370 (Upto 300 T)	1250 (Upto 300 T)	
				1250 (above 300 T)	950 (above 300 T)	
12	Biomedical	Incinerator Stack	PM	150 m	g/NM3	Insitu PM CEMS, UV Photometry and
	Incinerator		NOX	450 m	g/NM3	Chemiluminescence for SO2 and
			НСІ	50 mg	g/NM3	NOX Extractive dilution system
			CO & CO2	Combustion I	Efficiency 99%	IR GFC, FTIR, DOAS for multi-gas
			Temp. P.C.C	850 ±	50 °C	analysis
			Temp. S.C.C.	1050 ±	± 50 °C	Hot Extractive system is the best
13	Common	Incinerator Stack	PM	50 mg/NM3		Cross Duct / Insitu PM CEMS
	Hazardous		HCI,	50 mg/NM3		UV Photometry and
	Waste		SO2	200 mg/NM3		Chemiluminescence for SO2 and
	Incinerator		со	100 (30 min); 50 (24 ho	urly) mg/NM3	NOX Extractive dilution system
			NOX	400 mg/NM3		IR GFC, FTIR, DOAS for multi-gas
			HF,	4 mg/NM3		analysis
			02	≤11%		Hot Extractive system is the best
			TOC	20 mg/NM3		

CEMS Data: Broad System View

CEMS DEVICE AT INDUSTRY SITE	 Technology selection guidelines Installation, calibration and maintenance procedures and performance standards
DATA TRANSFER AND COMMUNICATION	 Open, transparent, vendor neutral system connecting CEMS device and PCBs server Reliability, quality, availability
SPCB SERVER	 Storage, validation, analysis of CEMS Data Facilitating regulatory functions and other administrative requirements

Check list for Inspection and Certification of Installation of CEMS

A. General Information

SN	Particulars	Information
1	Name of the Company	
2	Address	
3	Type (Category)	
4	Contact Person	
5	E. Mail	
6	Phone Numbers	

B. Information on Source Emission

SN	Particulars	Information
1	Application Description	
2	Size or Production Capacity	
3	Average Running Load	
4	Number of Emission points of process stacks for	
	which Emission Limits are Prescribed	
5	Number of Emission points of process stacks	
	installed CEMS	
6	Air Pollution Control Devices (APCDs) of	
	individual emission points	
7	Parameters covered under CEMS for individual	
	stack	

B. Information on Source Emission - Contd.

8	Type of CEMS installed (In-situ or Extractive)
9	Technology adopted for individual parameters
10	Parameter wise Make and Model of individual CEMS installed
11	The Sample conditioning system if Extractive CEMS are Used
12	Distance between probe and analyser in case of extractive CEMS
13	Whether Flue gas Temperature, Moisture, Velocity and diluents (O_2 and or CO_2) monitoring systems are installed; if Yes detail thereof;
14	Location of DAHS
15	Shelter or Analyser Location
16	Availability of Calibration Gas cylinders attached to systems with concentrations and validity

SN	Constituents	Expected Concentration	Ranges	
			Minimum	Maximum
1	SO2	ppm		
2	NOX	ppm		
3	СО	ppm		
4	H2S	ppm		
5	NH3	ppm		
6	HCI	ppm		
7	HF	ppm		
8	Hydrocarbon	ppm		
9	02	%		
10	CO2	%		
11	Opacity / PM	% / mg/NM ³		

C. Flue Gas Stream Constituents at Sample Probe Location

D. Flue Gas Conditions at Sample Probe Location

Condition	Expected Range	Obser	rved Range	
Flue gas Temperature (°C)		Minimum	Maximum	
Flue gas static pressure (mm H ₂ O)				
Flue gas velocity (m/Sec)				
Particulate (mg/NM ³)				
Moisture (%)				
Water Droplets (Yes or No)				
Fuel Used				
Quantity of Fuel Burnt				
Note: The values recorded should be in order of historical data				

E. Ambient Environment at CEMS Enclosure Location

Check Points		Observation
Elevation from sea level (m)		
Temperature (°C)	Minimum	Maximum
Relative Humidity (%)	Minimum	Maximum
Availability of UPS Yes / No		

F. Physical Arrangement at Probe Location

Check Points	Observation
Measurement location (Stack or Duct)	
Shape at Measurement Location (Circular or Rectangular)	
Height of the CEM from Ground Level (m)	
Distance of CEM downstream from last disturbance (m)	
Distance of CEM upstream from last disturbance (m)	
Inside Dimension at CEM location	
Wall thickness at CEM location	
Outside Dimension at CEM location	
Material of Construction of Stack or Duct	
Height of the manual Isokinetic sampling port (m)	
Distance between CEM and Isokinetic sampling port (m)	

G. Operational Aspects

Check Points	Observation
Calibration and Operation of Particulate CE	MS
Comment on CEMS Selection	
Comment on CEMS Installation Criteria	
Date of First Calibration	
Calibration at different Load Condition performed or not	
Present Dust Factor	
Actual Range of Measurement set in CEMS	
Number of calibration performed so far	
% Variations in selected Dust Factor with justification	
Reported unit of measurement	
Whether suitable corrections for Moisture, Temperature, Diluents	5
(CO ₂ , O ₂) are incorporated online in reports or not	
Records of servicing and maintenance is available or not	
Data Capture Rate	
Verify if there is any change in scaling in data logging an	d
transfer	
At least last one month data	
Verify if there is any sealing at upper end at below the selecte	d
range	
Verify if there is sudden fall or rise of data without justification	

Calibration and Operation of Gaseous CEMS				
Comment on CEMS Selection				
Comment on CEMS Installation Criteria				
Comment on Sample Transfer line and conditioning in case of				
Extractive CEMS				
Date of First Calibration (Multipoint with establishment within				
selected range)				
Actual Range of Measurement set in CEMS				
Zero Drift (Daily, Weekly and Monthly)				
Span Drift (Daily, Weekly and Monthly)				
Span Gas Concentration (it should be at 80% of Range)				
Reported unit of measurement				
Whether suitable corrections for Moisture, Temperature,				
Diluents (CO ₂ , O ₂) are incorporated online in reports or not				
Records of servicing and maintenance is available or not				
Data Capture Rate				
Verify if there is any change in scaling in data logging and				
transfer				
At least last one month data				
Verify if there is any sealing at upper end at below the selected				
range				
Verify if there is sudden fall or rise of data without justification				

Continuous (Real time) Source emission Daily Monitoring Report Format

A) Source Information:

1.	Reporting Period	From:	То:
2.	Name of the Industry with ID		
	(If any)		
3.	Plant Name		
4.	Stack ID		
5.	APCD		
6.	Operation Time (Hours)		

B) Information on CEMS

Parameter	Make	Instrument ID	Туре	Span	Location

C) Information on CEMS Operation Summary

Parameter	Down	time	Reasons	Corrective Actions				
	From	То						

Parameter (P)	Units		Hourly Average Emission																							
		00	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
24 hourly D	ata:		PM SO ₂		NO _X CO ₂					O ₂ HCI			F				Others									
Min																										
Мах																										
Average																										

Continuous (Real time) Source emission Monthly Monitoring Report Format

Pollutant	Inst	Stack	Data	Average	Downtime	Reasons	Excess	Magnitud	Zero –	Maintena
	ID	ID	Capture	monthly			Emissio	e of	Span	nce /
			Rate	emission			n events	Excess	Calibra	Repair of
								Emission	tion	CEMS
									Drift	
			(%)	Units as	% of		(hrs.)	% from	%	
				applicable	source			Standard		
					operation			limit		

Continuous (Real time) Source emission Quarterly Monitoring Report Format

Paramete	Instrumen	Locatio	Data	Downtim	Zero –	Out of	Corrective	Leak	Linearity	Accuracy
r	t ID	n	Capture	е	Span	Control	Actions	Check	Check	Test
			Rate		Calibrati	Periods in		Results		Report
					on Drift	terms of				
			(%)	% of	%	Drift				
				source						
				operati						
				on						
				UII						

How to deal with Excesses emission:

- (i) Any Exceedence of values over the prescribed standards or norms shall be considered as violation.
- (ii) Instantaneous elevated data i.e. spikes with duration less than one minute shall be dealt separately and not considered for data averaging.
- (iii) Continuous Exceedence of values upto 10% over the standards/norms for more than half an hour shall require preventive action from the industry.
- (iv) Frequent Exceedence of the values i.e. more than 5% of the total data capture in a day of the prescribed standards/norms shall invite action from SPCBs/PCCs
- (v) Any Exceedence of the monitored values as against the standards shall invite SMS & email to the industry from SPCBs/PCCs, requiring immediate feedback on the corrective action initiated/taken.
- (vi) In case the emission/ discharge quality exceeds continuously the prescribed norms by 10% over the standards and for duration of one hour or more, the industry shall inform the SPCBs/PCCs of the action initiated to control the emission/discharges and the effectiveness of the measures taken. In case the industry fails to control the emissions/discharges within the norms it shall move towards closure of its operation following the laid down standard operating practices.
- (vii) For any second failure of the industry to keep the emissions/discharges within 10% of the norms for period exceeding one hour the industry shall immediately move towards closure of its operation under intimation to SPCBs/PCCs.
- (viii) The values recorded during calibration or during preventive maintenance shall not be considered for Exceedence and assessing the data capture rate.
- (ix) Plant start-up or batch process starting emissions shall not be considered for averaging for the initial, 30 minutes period in case of batch processes or small furnaces/ boilers not operating continuously.

A more rational and scientific approach to deal with Excesses emission:

The German approach to using a PM CEMS is to build the statistical uncertainty (due to the factors of particle composition and size distribution) into the emission limit value. The correlation relation is not required to achieve a specific statistical accuracy (e.g., a confidence interval #10 percent at the emission limit value) to be approved. This approach is illustrated in the following example.

A municipal waste combustion facility has a base PM emission limit (EL) of 30 mg/dscm. Assume a specific source's PM CEMS correlation has a confidence interval (CI) at the emission limit of 4 mg/dscm (13 percent) and a tolerance interval (TI) at the emission limit of 11 mg/dscm (37 percent). Then, that specific source would have the following PM limitations

- No 30-minute average may exceed: 2*EL + TI = 60 + 11 = 71 mg/dscm.
- 97 percent of the annual 30-minute averages may not exceed: 1.2(EL + Cl) = 36 + 5 = 41 mg/dscm.
- No daily average may exceed: EL + CI = 30 + 4 = 34 mg/dscm.

Even with the uncertainty in the PM CEMS measurement, the correlation relationship can still be used as a basis for compliance. Traditionally, the EPA regulations have taken this uncertainty into account when a CEMS-based standard is adopted.

Way Forward

- 1. Development of CEMS calibration protocol
- 2. Training to Laboratories for calibration of laboratories
- 3. Laboratory Accreditations for CEMS calibration
- 4. Data requirements / Data formatting for data robustness, outlier-values, missing data, spike-values etc.
- 5. Data capture & data utilization / data use
- 6. Revision in the standard (CEMS based Compliance)

Abhijit Pathak apathak.cpcb@nic.in 43102348, 9971566700

THANK YOU

केन्द्रीय प्रदूषण

C P C D CENTRAL POLLUTION CONTE

नियत्र